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Dress the emu with a fireman outfit Let’s see it graduating Mark the drinks

Figure 1. Emu Edit is a multi-tasking model that combines various editing (left, middle) and vision (right) tasks for precise image editing.

Abstract

Instruction-based image editing holds immense potential

for a variety of applications, as it enables users to per-

form any editing operation using a natural language in-

struction. However, current models in this domain often

struggle with accurately executing user instructions. We

present Emu Edit, a multi-task image editing model which

sets state-of-the-art results in instruction-based image edit-

ing. To develop Emu Edit we train it to multi-task across an

unprecedented range of tasks, such as region-based edit-

ing, free-form editing, and Computer Vision tasks, all of

which are formulated as generative tasks. Additionally, to

enhance Emu Edit’s multi-task learning abilities, we pro-

vide it with learned task embeddings which guide the gen-

eration process towards the correct edit type. Both these

elements are essential for Emu Edit’s outstanding perfor-

mance. Furthermore, we show that Emu Edit can general-

ize to new tasks, such as image inpainting, super-resolution,

and compositions of editing tasks, with just a few labeled

examples. This capability offers a significant advantage in

scenarios where high-quality samples are scarce. Lastly,

to facilitate a more rigorous and informed assessment of

instructable image editing models, we release a new chal-

lenging and versatile benchmark that includes seven differ-

ent image editing tasks.1

1Project Page: https://emu-edit.metademolab.com/
*Equal contribution.

1. Introduction

Image editing is a widely-used application that millions en-

gage with every day. Popular image editing tools, how-

ever, either demand considerable expertise and are time-

consuming to use, or are quite limited, providing only a

predefined set of editing operations, such as specific filters.

Instruction-based image editing [2, 29] attempts to resolve

these limitations by allowing users to effortlessly describe

their editing goals using natural language instructions. For

instance, a user can provide a model with an image and in-

struct it to “Dress the emu with a fireman outfit” or “Let’s

see it graduating" (see Fig. 1).

Nevertheless, while instruction-based image editing

models like InstructPix2Pix [2] are designed to process any

given instruction, they often struggle to accurately inter-

pret and execute such instructions. Moreover, their gener-

alization is limited, often falling short on tasks that deviate

slightly from those they were trained on (see Fig. 3). To

address these gaps, we introduce Emu Edit, the first im-

age editing model trained on an extensive and diverse set

of tasks, including both image editing and computer vision

tasks. Emu Edit provides a substantial improvement in both

compliance with the edit instruction and preservation of the

visual fidelity of the original image. As we show through

both automatic metrics [18] and human judgments on two

benchmarks [29], Emu Edit achieves state-of-the-art results

in instruction-based image editing.

The success of Emu Edit stems from two key contribu-

tions. First, we train our model to multi-task across sixteen

distinct image editing tasks. These tasks span region-based
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(a) A cat (b) Remove the tail (c) Add a pink jacket (d) Make it rainy (e) Have the cat look shocked

(f) Extract the depth map (g) Generate a rainy day

image of a hedgehog in a

dress using the depth map

(h) Replace the dress with an

astronaut outfit

(i) Segment the spacesuit, and

detect the hands

(j) Add the text "purple cat"

using a purple font

Figure 2. Multi-turn image editing. Each subsequent image is derived from the prior one, using its associated caption. The initial image

is based on a zeroed reference.

editing tasks, free-form editing tasks and computer vision

tasks, all formulated as generative tasks. Unlike previous

work, we develop a distinct data curation pipeline for each

task, allowing us to gather a training set that is not only

more diverse but also more precise in its examples. We find

that training a single model on all tasks yields better results

than training expert models on each task independently. Ad-

ditionally, we show that as the number of training tasks in-

creases, so does the performance of Emu Edit. Furthermore,

we discover that surprisingly, computer vision tasks such as

detection, segmentation, and others, significantly enhance

editing performance, as validated both by human raters as

well as quantitative measures.

Second, to process this wide array of tasks effectively,

we introduce the concept of learned task embeddings,

which are used to steer the generation process toward the

correct generative task. Concretely, for each task, we learn

a unique task embedding vector, and integrate it into the

model through cross-attention interactions, and by adding it

to the timestep embeddings. We demonstrate that learned

task embeddings significantly enhance the ability of our

model to accurately infer the appropriate edit type from the

free-form instruction and execute the correct edit.

Equipped with a robust model trained across a broad

spectrum of tasks and guided by learned task embeddings,

we explore few-shot adaptation to unseen tasks via task in-

version. In this process, we maintain the model weights

untouched, and solely update a task embedding to fit the

new task. Our experiments demonstrate that Emu Edit can

swiftly adapt to new tasks, such as super-resolution, contour

detection, and others. Notably, for some tasks, fine-tuning

the model on just a handful of examples yields results that

nearly match those of an expert model trained on one hun-

dred thousand examples. This makes task inversion with

Emu Edit particularly advantageous in scenarios where la-

beled examples are limited, or when the compute budget is

low. Finally, to support future research for instruction-based

image editing, we publicly release a diverse and challenging

benchmark that includes seven different image editing op-

erations, as well as our model’s generations on this dataset.

In summary, this work addresses the limitations of

instruction-based image editing models in accurately fol-

lowing user instructions. We demonstrate that by employ-

ing multi-task training across a diverse array of tasks, in-

cluding recognition, generation, and editing, we can en-

hance our model’s performance. Furthermore, by incorpo-

rating learned task embeddings into our model’s architec-

ture, we not only improve its results but also enable effi-

cient few-shot learning for new tasks. With these improve-

ments, our model sets a new standard in the field, offering

significantly more precise and robust instruction-based im-

age editing capabilities than existing models.

2. Related Work

The emergence of high-performing text-to-image diffusion

models [8, 20, 21, 23] facilitated the development of effec-

tive text-based image editing methods. Such methods usu-

ally employ aligned and detailed descriptions of the input

and edited image to perform a specific edit. Prompt-to-
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Prompt (P2P) [9] injects the input caption attention maps

to the target caption attentions maps. Null-Text Inver-

sion [15] inverts an input image using the null-text em-

bedding to support editing of a real image. Plug-and-

Play (PNP) [25] injects spatial features in addition to atten-

tion maps and obtains better performance at global editing.

Imagic [10] finetunes the diffusion model to support com-

plex textual instructions. EDICT [26] suggests an image

inversion based on two noise vectors enabling better image

reconstruction and textual faithfulness. Another class of im-

age editing models, employs an input mask as additional in-

put [1, 27, 28]. Blended Diffusion [1] modifies the diffusion

step by blending the input image in the unmasked regions.

Imagen Editor [27] and SmartBrush [28] finetune the text-

to-image model to be conditioned on both the input image

and mask. While the text-based image editing methods de-

tailed above enable humans to edit images, they frequently

exhibit inconsistent performance and require multiple in-

puts, such as aligned and detailed descriptions of both the

input and target images, or at times, input masks.

To offer a more intuitive and user-friendly interface,

and significantly enhance ease of use for humans, Instruct-

Pix2Pix [2] introduced an instructable image editing model.

They developed this model by utilizing both GPT-3 [3]

and Prompt-to-Prompt [9], to generate a large synthetic

dataset for instruction-based image editing, and employed

the dataset to train an instructable image editing model. Un-

like InstructPix2Pix which used a synthetic dataset, Mag-

icBrush [29] developed a manually-annotated instruction-

guided image editing dataset by requesting humans to use

an online image editing tool [17]. Finetuning Instruct-

Pix2Pix on this dataset led to improved image editing ca-

pabilities. However, even though there has been progress

and improvement in instruction-based image editing mod-

els, we show in Sec. 5 that state-of-the-art image editing

models still struggle with accurately interpreting and pre-

cisely executing editing instructions.

In this paper, we drastically narrow such performance

gaps by leveraging multi-task training and a matching ar-

chitecture. Unlike prior work that solely focuses on image

editing [2, 29], we train our model to perform various tasks

and learn a very diverse set of capabilities. The quality and

versatility of our training procedure and dataset, together

with our improved architecture for multi-task learning, en-

ables us to make a big leap in performance and differenti-

ates us from prior work in the field. Fig. 3 include several

challenging editing samples as examples.

3. Multi-Task Dataset for Image Editing

Training a robust and accurate image editing model requires

a highly diverse dataset of input images, editing instruc-

tions, and output edited images. However, manually col-

lecting such examples is impractically time-consuming, ex-

1. Region-Based Editing

• Local: Substituting one object for another, altering an ob-

ject’s attributes (e.g., “make it smile”).

• Remove: Erasing an object from the image.

• Add: Inserting a new object into the image.

• Texture: Altering an object’s visual characteristics with-

out affecting its structure (e.g., painting over, filling or

covering an object).

• Background: Changing the scene’s background.

2. Free-Form Editing

• Global: Edit instructions that affect the entire image, or

that can not be described using a mask (e.g., “let’s see it

in the summer”).

• Style: Change the style of an image.

• Text Editing: This involves text-related editing tasks

such as adding, removing, swapping text, and altering the

text’s font and color.

3. Vision tasks

• Detect: Identifying and marking a specific object within

the image with a rectangle bounding box.

• Segment: Isolating and marking an object in the image.

• Color: Color adjustments like sharpening and blurring.

• Image-to-Image Translation: Tasks that involve bi-

directional image type conversion, such as sketch-to-

image, depth map-to-image, normal map-to-image, pose-

to-image, segmentation map-to-image, and so on.

Table 1. Description of the tasks forming the Emu Edit dataset.

isting sources on the web (e.g. communities and forums on

social media) are limited in size, and publicly available syn-

thetic datasets often lack in diversity or quality. Therefore,

we construct a new dataset that encompasses sixteen distinct

tasks and ten million examples. Each example (cI , cT , x, i)
in our dataset, contains an input image cI , a text instruc-

tion cT , a target image x, and a task index i (out of the

sixteen). The following section outlines the process of the

data construction. In Sec. 3.2 we describe the instruction

generation process, and in Sec. 3.3 the image pairs (cI , x)

generation and filtering.

3.1. Task Categories

The dataset is composed of tasks which are divided into

three main categories: region-based editing, free-form edit-

ing, and vision tasks. Tab. 1 includes the full list of tasks,

and their distribution in the train set is visualized in Fig. 7.

3.2. Instruction Generation

To generate editing instructions, we leverage the dialogue-

optimized 70 billion parameter Llama 2 variant [24]. We

observed that using a single agent to generate the instruc-

tions for all tasks leads to a lack of diversity in the dataset.

Notably, the LLM exhibits a bias towards particular tasks
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and instruction phrasings. To address this, we utilize in-

context learning to create a task-specific agent for each task.

Concretely, we provide the LLM with a task description, a

few task-specific exemplars, and a real image caption. To

increase diversity we sample the exemplars and randomize

their order. Given such input, we expect the LLM to output

(1) an editing instruction, (2) an output caption for an ideal

output image, and (3) which objects should be updated or

added to the original image. We refer the readers to Fig. 15-

16 for examples of our prompts. Further details on instruc-

tion generation are provided in Appendix 7.1.

3.3. Image Pairs Generation

Our aim is to generate pairs of input and edited images

that adhere to the edit instructions and preserve image el-

ements that should remain intact. In order to address the

unique challenges associated with each task and create a

high quality dataset, we develop a novel generation tech-

nique for each task. In the following subsections, we first

detail our core improvements to the Prompt-to-Prompt al-

gorithm, utilized when generating data for Local, Add, Re-

move, Texture, and Global tasks. Secondly, we describe

our post-processing filtering. Full details can be found in

Appendix 7.2. For region-based tasks, see Appendix 7.2.3.

Free-form tasks are described in detail in Appendix 7.2.4.

Finally, all vision tasks are described in Appendix 7.2.5.

Grounded Precise Editing. A crucial prerequisite when

creating a pair of input and edited images is to guaran-

tee that the two images differ only in specific elements or

locations, while remaining identical in all other aspects.

Previous instruct-based image editing methods [2] rely on

Prompt-to-Prompt (P2P) to build an image-editing dataset.

P2P injects cross-attention maps from the input image gen-

eration to the edited image generation. To support local ed-

its, P2P additionally approximates a mask of the edited part,

based on the cross-attention maps and constrains the edit to

this local area. P2P relies on word-to-word alignment be-

tween the input image caption and the edited image cap-

tion (e.g. "a cat riding a bicycle" and "a cat riding a car")

to produce editing image pairs. However, when there is no

word-to-word alignment, the resulting mask tends to be im-

precise due to its reliance on cross-attention maps. Further-

more, as word-to-word alignment is not a practical assump-

tion in most of the image editing tasks, this approach of-

ten fails to preserve structure and identity. To address this

challenge, we propose a mask extraction method, which is

applied before the editing process. Our approach involves:

(i) identifying the edited areas from the editing instruction

via an LLM and creating corresponding masks before im-

age generation, and (ii) integrating these masks during the

editing process to ensure seamless fusion of edited regions

with the original image. Further description of the method

is found at Appendix 7.2.1.

Distinct editing challenges, such as adding or removing

objects, require tailored solutions. We utilize various tech-

niques, including dilation and Gaussian blurring, to refine

the masks. We describe the mask extraction process in de-

tail in Appendix 7.2.2.

Filtering. We employ a comprehensive filtering approach

to ensure the fidelity of the dataset. This includes: (i) us-

ing the task predictor (Sec. 4.2) to reassign samples with

instructions that should belong to another task, (ii) apply-

ing CLIP filtering metrics [2], (iii) employing structure pre-

serving filtering based on the L1 distance between the depth

map of the input image and the edited image, and (iv) apply-

ing image detectors to validate the presence (in Add task),

the absence (in Remove task) or replacement (in Local task)

of elements, according to the objects specified in the in-

struction. This process filters out 70% of the data, resulting

in a final dataset of ten million samples.

4. Method

Emu Edit is a diffusion model designed to multi-task across

a broad spectrum of editing tasks. These include region-

based and free-form image editing tasks, as well as tradi-

tional computer vision tasks like detection, segmentation,

and depth estimation, all of which are formulated as gener-

ative tasks. As Emu Edit is trained on various tasks, a cru-

cial aspect is the ability to identify the semantic edit (e.g.,

global/local/texture) that needs to be applied, based on the

user instruction. However, in cases where the instruction is

very unique (such as "fix the bumper" in Fig. 4), or when

there is ambiguity regarding the edit type (e.g. "change the

sky to be gray" in Fig. 4 can be interpreted as both Global

edit and Texture edit), the model may encounter difficulty

determining the expected edit type. To provide the model

with a strong condition that will steer the generation pro-

cess toward the correct task, we propose learning a unique

task embedding for each task, which we integrate into the

model. During training, the task embeddings are learned

together with model weights. Post training, Emu Edit is

able to adapt to new tasks via few-shot learning a new task

embedding, leaving the rest of the model frozen. Last, we

introduce a method to preserve the quality of the generated

images in multi-turn editing scenarios. We follow next with

a detailed description of each part of our method.

4.1. Architecture

Our model builds upon the foundation set by Emu, which

is outlined in [6]. The Emu model is a two-stage approach

that begins with a pre-training phase and concludes with a

quality fine-tuning stage. The pivotal aspect of the method

is that the fine-tuning dataset is relatively small, compris-

ing only a few thousand images, but must be of excep-

tional quality, often necessitating manual annotation. Emu

adapted the latent diffusion model architecture [22] to sup-
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Input Emu Edit InstructPix2Pix MagicBrush

Make it

play a

rainbow

colored

trumpet

Global & Texture edit. Baselines struggle to execute complex instructions that involve both global edits and texture changes.

Add two

unicorns

on top of

the car

Prepositions & Counting. Baselines struggle with relations between objects and number of objects.

Change

the legs

to be

bionic

Local. Baselines struggle to perform intricate local edits.

Figure 3. Failure cases of baseline instruction-based image editing models.2

port high-resolution image generation and incorporated a

16-channel autoencoder with encoder E and decoder D. In

the following section, we adapt the notation of [2]. A large

U-Net, ϵθ, with 2.8 billion parameters, θ, text embeddings

from CLIP ViT-L [18] and T5-XXL [19], and a substan-

tial pre-training dataset of 1.1 billion images facilitate the

model’s ability to learn complex semantics and finer details,

with a noise-offset strategy contributing to high-contrast

and aesthetically pleasing image generation. Given the en-

coded latent of an image z = E(x), the diffusion process

generates a noisy latent zt where the noise level increases

over timesteps t ∈ T . To convert Emu to an instruction-

based image editing model, we condition it on the image to

be modified cI and the instruction cT . Emu Edit is trained

2The samples depicted in this caption were selected by the authors.

They do not cover all scenarios, but are meant to represent some common

scenarios the authors encountered.

to minimize the following optimization problem,

min
θ

Ey,ϵ,t

[

∥ϵ− ϵθ(zt, t, E(cI), cT )∥
2
2

]

(1)

where ϵ ∈ N(0, 1) is the noise added by the diffusion pro-

cess and y = (cT , cI , x) is a triplet of instruction, input

image and target image from the dataset. In practice, we ini-

tialize the weights of Emu Edit with the weights of Emu. To

support the image conditioning, we follow [2] and increase

the number of input channels. New weights are initialized

to zero. During inference, we perform classifier-free guid-

ance on both image and text conditions. In our experiments

we use a scale of γI = 1.5 for the image condition and

γT = 5.0 for the text condition. Furthermore, we apply a

rescaling of the diffusion scheduler to achieve a zero signal-

to-noise ratio (SNR) at the terminal timestamp, as suggested

in [12]. This is crucial in order to avoid any mismatch be-

tween the model’s training and testing phases. For more

implementation details see Sec. 11.
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4.2. Learned Task Embeddings

To guide the generation process toward the correct task, we

learn an embedding vector for each task in the dataset. Dur-

ing training, given a sample from our dataset, we use the

task index, i, to fetch the task’s embedding vector, vi, from

an embedding table, and optimize it jointly with the model

weights. We do so by introducing the task embedding vi
as an additional condition to the U-Net, ϵθ. Concretely,

we integrate the task embedding into the U-Net via cross-

attention interactions, and by adding it to the timestep em-

beddings. The optimization problem is updated to

min
θ,v1,...,vk

Eŷ,ϵ,t

[

∥ϵ− ϵθ(zt, t, E(cI), cT , vi)∥
2
2

]

(2)

where k is the total number of tasks in our dataset and

ŷ = (cI , cT , x, i) is a quadruplet of input image, input in-

struction text, target image, and task index from the dataset.

Task-specific conditioning arises from the observation

that models lacking such conditioning can become per-

plexed about the type of edit required, particularly when

the instructions are complex or the edit type is ambiguous.

For instance, as visualized in Fig. 4, (1) a model without

task conditioning might perform a global edit when a tex-

ture edit is required, (2) it might opt for segmentation when

a global edit is necessary, and (3) it could implement a style

edit in situations where a local edit would fit better.

In the inference stage, we predict the task index. Specif-

ically, we fine-tune a Flan-T5-XL model to identify the task

at hand given the input instruction.

4.3. Task Inversion

To enable few-shot learning of new tasks without losing

the general abilities of Emu Edit, we propose a method for

adapting the model without changing the U-Net weights.

Given a few examples of a new task, we learn a new task

embedding, vnew. We freeze the model weights, and adapt

it to the task only through the task embedding. Thus, to fit

a new task embedding we solve the following optimization

problem:

min
vnew

Ey,ϵ,t

[

∥ϵ− ϵθ(zt, t, E(cI), cT , vnew)∥
2
2

]

(3)

where vnew is the learned task embedding. Note that during

task inversion y is a triplet belonging to the new task.

The model can then be employed for the new task by

conditioning it on the learned task embedding, and it can

still handle its original tasks by relying on the initial task

embeddings. In Sec. 5.5, we demonstrate that our model

effectively generalizes to novel tasks using this method.

4.4. Sequential Edit Thresholding

We notice that applying the model repeatedly, in multi-turn

editing scenarios, aggregates reconstruction and numerical

(1)

Change

the sky

to be

gray

(2)

Fix the

bumper

of the

vehicle

(3)

Turn the

television

into a

claude

monet

painting

Input Without task emb. With task emb.

Figure 4. Task embeddings. Model trained without task em-

beddings may get confused about the edit type when the instruc-

tions are complicated or there is ambiguity regarding the edit type:

(1) Global edit (instead of Texture), (2) Segmentation (instead of

Global), (3) Style edit (instead of Local).

errors, which translate to noticeable artifacts. To mitigate

this, we add a per-pixel thresholding step after each edit-

turn. At each step s, we use the pixel value in the out-

put image, cs+1

I , only if its alteration surpasses a specific

threshold. Otherwise, we keep the pixel value from the in-

put image, csI . Specifically, given an edit turn s, we com-

pute the absolute difference image d = ∥cs+1

I − csI∥1 over

the RGB channel, and apply the following thresholding:

cs+1

I =

{

csI if d̄ < α,

cs+1

I otherwise.
(4)

where, d̄ is obtained after passing d through a low pass fil-

ter, in order to smooth the transition between previous and

current pixels. In practice, we choose α = 0.03. Please

refer to Sec. 10.6 for a qualitative comparison. In Fig. 2 we

show examples of multi-turn editing.

5. Experiments

Our experiments evaluate the ability of Emu Edit to follow

user instructions faithfully and preserve the visual fidelity

of the original image. First, we evaluate the performance of

our approach on instruction-based image editing tasks. Sec-

ond, we conduct a comprehensive ablation study to assess

the effectiveness of our different contributions. Specifically,

we ablate the contribution of the computer vision tasks to

the model performance on image editing tasks, the impor-

tance of learned task embeddings, and the effect of multi-

task learning on instruction-based image editing. Further
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Table 2. Comparison with image-editing baselines evaluated on Emu Edit test set and MagicBrush test set. For each benchmark we report

CLIP, L1, DINO metrics and human ratings. Human evaluation shows the percentage of raters that prefer the results of Emu Edit.

Emu Edit Test set MagicBrush Test Set

Method CLIPdir ↑ CLIPim ↑ CLIPout ↑ L1↓ DINO↑ Text Image CLIPdir ↑ CLIPim ↑ CLIPout ↑ L1↓ DINO↑ Text Image

align. faith. align. faith.

InstructPix2Pix [2] 0.078 0.834 0.219 0.121 0.762 77.33 76.71 0.115 0.837 0.245 0.093 0.767 71.79 71.60

MagicBrush [29] 0.090 0.838 0.222 0.100 0.776 74.50 74.10 0.123 0.883 0.261 0.058 0.871 59.54 60.39

PnP [25] 0.028 0.521 0.089 0.304 0.153 98.95 99.00 0.025 0.568 0.101 0.289 0.220 97.24 96.96

Null-Text Inv. [15] 0.101 0.761 0.236 0.075 0.678 81.63 85.47 0.121 0.752 0.263 0.077 0.664 76.54 85.66

Our 0.109 0.859 0.231 0.094 0.819 – – 0.135 0.897 0.261 0.052 0.879 – –

ablation on our data generation pipeline can be found in

Appendix 8. Finally, we demonstrate our model’s ability

to learn new tasks via few-shot learning.

5.1. Measures

We employ two main measures in our evaluation: edit text

alignment and image faithfulness. Specifically, for each pair

of input image and editing instruction, we use the following

automatic metrics: (i) CLIP [18] text-image direction sim-

ilarity (CLIPdir) – measuring agreement between change

in captions and the change in images, (ii) CLIP image

similarity (CLIPimg) – measuring change between edited

and input image, (iii) CLIP output similarity (CLIPout)

– measuring edited image similarity with output caption,

(iv) L1 pixel-distance between input and edit image, and

(v) DINO [4] similarity between the DINO embeddings of

input and edited images. With the exception of the L1

distance, where lower values indicate better performance,

higher values in all other measures signify better results. A

low L1 distance translates to small changes in image’s pixel

values. A high DINO and CLIPimg similarity score, sug-

gests semantic similarity between the images. For region-

based edits, high image similarity scores indicate the edits

were precise. For free-form edits, high similarity scores in-

dicate image structure preservation. CLIPdir and CLIPout

measure how well the model followed the instruction.

In addition, we asked human raters to evaluate the text

alignment and image faithfulness. In each evaluation sce-

nario, raters are presented with two modified images along-

side the original input image and instruction, and are pre-

sented with two questions: (i) Image Faithfulness: which

image better preserves elements in the input image, and (ii)

Text Alignment: which image best follows the instruction.

5.2. Evaluation

Throughout the paper, we report results on the MagicBrush

test set [29] and the Emu Edit benchmark. In the follow-

ing section, we describe our motivation for creating this

benchmark, and detail its curation process. To date, there

are two main benchmarks for evaluating instruction-based

image editing capabilities. First, the InstructPix2Pix bench-

mark [2], which is intrinsically biased due to its reliance

on generated Stable Diffusion [21] input images, and GPT-

3 [3] generated instructions. Consequently, it is unclear

whether its results will truly mirror the performance on real

input images, with genuine user instructions.

Unlike InstructPix2Pix, the second benchmark, Mag-

icBrush [29], uses a diverse set of authentic input images

from the MS-COCO benchmark [5, 13], and annotator-

defined instructions. Nonetheless, this dataset also suffers

from inherent bias. During data collection, annotators were

directed to use the DALLE-2 image editing platform [17] to

generate the edited images. Thus, this benchmark is biased

towards editing instructions that the DALLE-2 editor can

successfully follow, which may compromise both its diver-

sity and complexity.

Emu Edit Benchmark. To collect a dataset with re-

duced bias and of higher diversity, we take a different ap-

proach. We first define seven different categories of poten-

tial image editing operations: background alteration (Back-

ground), comprehensive image changes (Global), style al-

teration (Style), object removal (Remove), object addition

(Add), localized modifications (Local), and color/texture al-

terations (Texture). Then, we utilize the diverse set of in-

put images from the MagicBrush benchmark [29], and for

each editing operation, we task crowd workers to devise

relevant, creative, and challenging instructions. Moreover,

to increase the quality of the collected examples, we ap-

ply a post-verification stage, in which crowd workers filter

examples with irrelevant instructions. Finally, to support

evaluation for methods that require input and output cap-

tions [9, 25], we additionally collect an input caption and

output caption. When doing so, we ask annotators to ensure

that the captions capture both important elements in the im-

age, and elements that should change based on the instruc-

tion. See Sec. 9 for examples of our benchmark, which we

publicly release to support better evaluation of instruction-

based image editing models, and more details on the bench-

mark curation process.

5.3. Baseline Comparisons

We compare our model against two instruction-based im-

age editing baseline models: InstructPix2Pix [2], and Mag-

icBrush [29], which is a variant of InstructPix2Pix that
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was fine-tuned on the MagicBrush dataset. Additionally,

we compare our model against two text-based image edit-

ing methods: PNP [25] and Null-Text Inversion modifi-

cation of P2P [9, 15]. Unlike instruction-based models,

these works expect image descriptions. Therefore, we pro-

vide them with access to the input caption and output cap-

tion. Do note, providing these methods with access to the

ground-truth captions could potentially offer an edge over

instruction-based models, since the automatic metrics also

rely on these captions. Tab. 2 shows our results versus the

baselines. The findings indicate that human raters consis-

tently prefer Emu Edit over all baselines by a large margin.

Furthermore, apart from Null-Text Inversion, which as ex-

plained above, utilizes the ground-truth captions during in-

ference, our approach outperforms the existing baselines on

the automatic metrics. We provide qualitative comparisons

in Fig. 3, Fig.13-14, and Fig.17-18. For performance on

vision tasks, see Sec. 10.1.

5.4. Ablations

Computer Vision Tasks Enhance Image Editing Tasks.

Here we demonstrate the importance of the vision tasks to

Emu Edit performance on image editing tasks. For this,

we trained two additional models on all tasks except: (i)

detect and segment tasks, and (ii) image-to-image trans-

lation tasks. As we show in Tab. 4, adding the detection

and segmentation tasks improves the model performance in

region-based editing tasks. Additionally, we observe that

image-to-image translation tasks improve the performance

in free-form editing tasks. We hypothesize that the recog-

nition tasks improve the model’s recognition capabilities,

leading to more accurate and precise localized modifica-

tions. Similarly, image-to-image tasks assist the model in

understanding the entire image structure, thereby enhanc-

ing its capabilities for global operations.

Contribution of Learned Task Embeddings. We com-

pare three variants of Emu Edit: (i) conditioned on the

ground-truth task embedding, (ii) conditioned on the task

embedding, as predicted by the task predictor described in

Sec. 4.2, and (iii) without conditioning on the task type.3

Tab. 3 shows the results on the validation set of our bench-

mark. As can be seen, conditioning on the task type boosts

the model’s performance. Furthermore, our task predic-

tor closes the gap with the ground-truth conditioned model.

Qualitatively, we observe that without conditioning on the

task type the model may perform the wrong editing oper-

ation (Fig. 4). In Fig. 9, we demonstrate the effect of ma-

nipulating the task while keeping the instruction and input

image fixed. As can be seen, changing the task embedding

directly influences the task executed by the model.

Multi-Task versus Expert Models. We hypothesize that

training a single model on a diverse range of tasks, encom-

3(iii) was trained without learned task embeddings.

Table 3. Learned task embeddings ablation on our validation set.

We compare variations of Emu Edit: without task type condition,

with predicted task type, and with ground-truth task type.

Method CLIPdir ↑ CLIPim ↑ CLIPout ↑ L1↓ DINO↑

w/o task emb. 0.104 0.843 0.227 0.109 0.792

with pred. task 0.117 0.850 0.231 0.103 0.809

with gt task 0.119 0.852 0.231 0.100 0.811

Table 4. Contribution of computer vision tasks. Human evaluation

is shown as a percentage of majority votes in favor of our model.

Region-Based Free-form

Method Text Image Text Image

align. faith. align. faith.

without detect/segment 60.0 60.2 52.3 51.5

without im2im translation 50.2 49.0 58.0 60.1

passing both image editing and computer vision, leads to

enhanced performance in each individual task, outperform-

ing models that are specifically trained for a single task. To

validate this hypothesis, we train an expert model for each

task, and compare its performance to ours on that particular

task. In this ablation, we train the models for half the steps

of our complete model. Results provided in Tab. 7 show

that the multi-task model is superior to all experts models.

Influence of Number of Tasks. Here, we ablate the num-

ber of tasks participating in the multi-task training scheme.

In Fig. 8 we report the average CLIPdir on the Style and

Texture tasks when iteratively excluding other tasks, and

training a model on the new tasks list. As can be seen, aug-

menting the model with additional tasks leads to improved

performance, even in tasks which are not directly associated

with the added ones. For instance, the Background task en-

hances the model’s performance on the Texture and Style

tasks.

5.5. Few­Shot Learning of New Tasks

Finally, we evaluate our model’s ability to generalize by

testing it in a few-shot scenario with previously unseen

tasks. We test its generalization performance across the fol-

lowing tasks: (i) super-resolution (x4), (ii) object contour

detection, (iii) mask-based inpainting, and (iv) a compos-

ite task formed by combining two tasks from our dataset:

add and detect. For each task, we assess the model’s perfor-

mance when trained with 0, 1, and 100 examples, with the

0-example case being equivalent to a zero-shot setting. We

compare three baselines: (i) Scratch – Emu Edit initialized

with Emu’s weights, trained on the examples, (ii) Task In-

version – Emu Edit with task inversion (Sec. 4.3), and (iii)

Finetune – Emu Edit where we finetune all of the model’s

weights on the examples. As an upper-bound expert, we

train the first baseline on 100,000 examples. Note that, the

"Task Inversion" and "Finetune" baselines were trained on
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(i)

Incorporate

a bee into

the bag’s

pattern and

detect it

(ii)

Mark the

gift

bags

Input Emu Edit

Figure 5. Generations on unseen tasks with task inversion. (i)

composition of add and detect tasks, (ii) object contour detection.

(a) Inpainting (b) Add + Detect

Figure 6. Few-shot performance for different tasks over 1, 10,

and 100 samples. Each line represents a different training setting:

Emu finetune (Blue, ⃝), Emu Edit finetune (Orange, □), task in-

version (Green, △), all compared to an upper-bound expert trained

on 100k samples (Red dashed line, ♢).

the multi-task dataset whereas the “Scratch” baseline was

not. As can be seen in Fig. 6, fine-tuning with a single ex-

ample is enough to significantly enhance the performance,

while training from scratch results in overfitting. Moreover,

utilizing 100 samples nearly achieves expert-level perfor-

mance, implying that the model can effectively generalize

to novel tasks. Additionally, we observe that task inver-

sion is comparable to a full finetune. This suggests that the

model already possesses all the necessary information and

can simply be "queried" with a new task embedding to pro-

duce the desired output. For performance and generation

examples on additional tasks see Figs. 5, 10 and 11.

6. Conclusion

Emu Edit presents a step change in instructable image edit-

ing capabilities, primarily due to its unique training on both

recognition and generation tasks. This dual-focus approach

significantly enhances the model’s comprehension of natu-

ral language instructions, enabling it to accurately execute a

wide array of editing operations. Its ability to generalize to

new tasks like image inpainting and super-resolution with

minimal examples further demonstrates its versatility and

advanced understanding. Additionally, our framework has

the potential for further integration with a multimodal LLM

in future work. This enhancement could be especially use-

ful for editing tasks that necessitate more intricate reasoning

from the input image, like counting objects or undertaking

complex, highly detailed tasks.
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Emu Edit: Precise Image Editing via Recognition and Generation Tasks

Supplementary Material

7. Data

Fig. 7 shows the tasks composing our dataset and their dis-

tribution.

Figure 7. Distribution of the tasks in our training dataset.

7.1. Instruction Generation

We generate instructions utilizing the dialogue-optimized

70B parameter Llama 2 variant. We use a temperature of 0.9

and set the top-p value to 0.9. We employ LLM in-context

learning to generate instructions. Figs. 15-16 demonstrate

the prompts used for task Add. A similar approach is used

for the remaining tasks. We instruct the LLM to generate

instructions similar to, but diverse from, the examples pro-

vided.

To achieve this, we supply the LLM with the following:

(1) a system message describing the input and output for-

mats, (2) an introduction message in which we outline the

problem and the goal for each key in the output, and, (3)

a historical context of the conversation with the LLM con-

taining examples for possible outputs. We then prompt the

LLM with a new input caption and ask it to provide a new

instruction. To encourage more variance and randomness

in the LLM-generated instructions, we perform the follow-

ing on the historical context: (1) shuffling between exam-

ples, (2) randomly sampling 60% of the examples, and, (3)

randomly changing the verbs in the examples from a set of

words.

7.2. Image Pairs Generation

Below we describe in detail our image generation methods

for all the tasks. The image pair generation phase uses an

image caption, and the corresponding output caption, "orig-

inal object", and "edited object" that the LLM generated in

the instruction generation phase.

7.2.1 Grounded Precise Editing

As described in Sec. 3.3, we integrate the mask m of the

edited area, during the editing process, to ensure seamless

blending of edited regions with the original image. We call

this operation mask-based attention control. Blending is de-

fined as follows: xt ·m+(1−m) ·yt, where xt is the noisy

edited image in step t, and, yt is the noisy version of the

input image in step t. In the first blends percent of the steps

we replace each of the noisy generated images with the cor-

responding noisy version of the input images. In the rest

of the steps we use blending. The purpose of this, is to en-

sure structure preservation between the input and the edited

image. We continue by following P2P and inject the self

attention layers on all of the tokens. Cross attention lay-

ers are injected on the common tokens between the input

and output captions. We denote by Nc, and Ns the portion

of steps where we share cross attention and self attention

maps, correspondingly.

7.2.2 Mask Extraction

Region-based editing includes all the editing instructions

that perform changes to the image in a limited region, leav-

ing the rest of the image unchanged. To adjust a particular

object or location while preserving the rest of the details, we

utilize a mask of the local area in the editing process. We

utilize DINO [14] to detect the area that needs to be masked,

using the "original object" and "edited object" fields that

were generated in the previous stage (Sec. 7.1).

Dilation, Gaussian Blurring and Bounding Box Masks:

We observe that when utilizing mask-based attention con-

trol to generate an edited image, it often replaces the object

with a similar object type instead of removing it. For ex-

ample, when masking the region around a dog, we confine

the editing to that specific area, resulting in the generation

of a new variation of the dog. We address this issue by

creating three different types of masks. The first employs

the original precise mask, created by DINO and SAM [11].

The second involves expanding the mask beyond the added

object through dilation and then refining it using Gaussian

blurring. Finally, the third approach uses the bounding box

around the object (created by DINO), thereby eliminating

the constraints of a specific shape. We generate multiple

images, each with a different mask, and then filter for the

1



best image. Our filtering is described in Sec. 3.3.

Possessive words: In some cases the "original object"

and "edited object" generated by the LLM contain posses-

sive words (e.g, "a dog’s tail"). We observe that, in many

cases, DINO struggles to detect the object in these cases. To

this end, we employ an additional prompting to the LLM to

identify the object without possession.

7.2.3 Region-Based Editing Tasks

Local/Texture Given the input caption, we first gener-

ate the input image. Then, we utilize the "original object"

(as described in Sec. 7.2) to extract the local mask (using

Sec. 7.2.2). Lastly, we apply masked-based attention con-

trol using the obtained mask to generate the edited image.

We repeat this entire process for 10 iterations, where in each

iteration, we sample the guidance scale from [4, 8], Nc and

Ns from [0.3, 0.9], and blends from [0.02, 0.2].

Add Extracting the mask of the "edited object" (the ob-

ject that was added in this case) is not possible in advance

because the object does not exist in the input image. To

overcome this challenge, we address this as follows:

1. We generate the output image y using the output caption.

Note that the image y contains the "edited object".

2. The mask m of the "edited object" in y is extracted.

3. We apply the mask-based attention control to generate

the input image x using the input caption, the image y

and the mask m

The main problem with this approach is that in certain

instances, we generate a different version of the object, in-

stead of eliminating it, as described in Sec 7.2.2.

Remove. The process of generating data for Remove task

is similar to the one of Add task. The only difference is

that we first generate the image x (using the input caption),

then extract the mask m of the object to remove, and finally

generate the image y using the output caption, image x and

the mask m.

Background. Given an input image, input caption and the

edited object (in this case, the alternative background), we

first extract the background mask. To eliminate artifacts

in the contour, we apply minimum filter which extends the

background mask and then smooth it using Gaussian filter-

ing. Next, we provide the image and the resulting mask

as input to an inpainting model, which creates a new back-

ground. Lastly, we blend the input image and the edited

image in the mask region. We generate 10 edited images,

with different noise and guidance scale, and pick the best

according to CLIP metrics.

7.2.4 Free-Form Editing Tasks

Global. The global task includes editing instructions that

are not restricted to a specific area. Therefore, we generate

the image pairs using mask-based attention control with a

blank mask. blends is sampled from [0.1, 0.2] to encour-

age better image faithfulness. We sample Nc and Ns from

[0.4, 0.9].

Style. We use Plug-and-Play (PNP) [25] to generate the

stylized edited images. The goal of this task is to alter the

image style according to the editing instruction while pre-

serving the image structure. We apply PNP on the real input

images using DDIM inversion. For each sample, we gener-

ate 10 edited images, each with the following parameters

sampled: guidance scale sampled from [6.5, 10.0], Ns from

[0.5, 1.0], and, the portion of spatial features to share is set

to 0.8.

Text Editing. The text editing task includes adding text to

the image, removing text from the image, and replacing one

text with the other. In addition, we allow the user to choose

the font and the color of the added text. We generate a mask,

m, of the text found in the input image, x, using OCR [7].

We utilize mask m to inpaint the image, denote the new

image y. For adding text, we use y as the input image and

x as the edited image. For removing text and replacing text,

we use the reverse. When replacing text, we overlay the

inpainted region in image y with a text in a specific font and

color.

7.2.5 Vision tasks

Detect/Segment. Given an input image, we detect the

"edited object" using DINO. To formalize detection as a

generative task, we create a new image y by drawing the

detected bounding box. For segmentation, we paint the de-

tected object pixels.

Color. We define the Color task as a modification to the

overall colors of an image. We generate samples by apply-

ing the following filters: (1) color filters - randomly chang-

ing the brightness, contrast, saturation and hue of an image,

(2) blurring - applying random-sized Gaussian kernels, and

(3) sharpening and defocusing.

Image-to-Image Translation Tasks that involve bi-

directional mapping from conditioning images to target im-

ages. For instance, sketch-to-image and image-to-sketch.

We follow [30], to generate depth maps, segmentation

maps, human poses, normal maps and sketches.
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Table 5. Data generation pipeline evaluation. We compare our

data generation pipeline with that of InstructPix2Pix. We also re-

port the automatic metrics on the InstructPix2Pix training dataset.

Task Method CLIPdir CLIPim CLIPout L1↓ DINO↑

Local
IP2P 0.329 0.922 0.270 0.046 0.917

Our 0.402 0.927 0.289 0.029 0.908

Texture
IP2P 0.282 0.876 0.297 0.189 0.671

Our 0.373 0.957 0.296 0.033 0.923

Remove
IP2P 0.204 0.818 0.254 0.067 0.755

Our 0.279 0.913 0.266 0.046 0.841

Add
IP2P 0.263 0.897 0.278 0.157 0.934

Our 0.318 0.962 0.304 0.007 0.925

Global
IP2P 0.281 0.916 0.276 0.103 0.845

Our 0.315 0.919 0.289 0.081 0.869

Background
IP2P 0.106 0.829 0.271 0.082 0.725

Our 0.214 0.843 0.283 0.201 0.771

IP2P Dataset 0.172 0.855 0.271 0.119 0.809

8. Dataset Evaluation

In Sec. 3 we introduce our dataset generation pipeline,

which includes methods that address the unique difficulties

associated with each particular task. In this section we com-

pare our approach with that of InstructPix2Pix. We begin

by sampling 6,000 random samples from the same distri-

bution of Sec. 3, following the instruction generation stage.

Hence, each sample contains the input image, input cap-

tion, editing instruction, output caption, and the edited ob-

jects. We then generate image pairs using both our data

generation pipeline, and that of InstructPix2Pix, which em-

ploys Prompt-to-Prompt and CLIP-based filtering. In Tab. 5

we report automatic metrics comparing the outputs of each

pipeline. As can be seen, our method for data generations

outperforms that of InstructPix2Pix (IP2P) on all the tasks.

Additionally, to isolate the effect of our instruction gener-

ation stage, we also directly evaluate the InstructPix2Pix

training dataset, which also underperforms when compared

to ours.

Table 6. Number of images per task and split in our Image Editing

Benchmark

Task Validation set Test set

Add 264 533

Background 266 373

Color 262 519

Global 220 219

Remove 264 531

Local 256 446

Style 227 434

Figure 8. Ablation on the model performance (CLIPdir) on Style

and Texture tasks as we progressively exclude tasks that don’t fall

within these categories.

9. Image Editing Benchmark

We take the images from the MagicBrush benchmark [29]

and undergo a three-step annotation process utilizing crowd

workers: (i) instruction generation, (ii) instruction filtering,

and, (iii) caption annotation. In the first step, three crowd

workers are assigned to generate an instruction for each (im-

age, task) pair. Moving to the second stage, five different

crowd workers classify each (image, instruction) pair’s task

type and whether the instruction is relevant to the image.

Instructions with at least one irrelevant annotation are then

filtered out, and for the remaining ones, the task is deter-

mined through majority voting among the five workers. At

this juncture, we select, at most, a single instruction for each

(image, task) pair to preserve the benchmark’s diversity.

Finally, we task crowd workers with annotating two cap-

tions for each remaining (image, instruction) pair - one

for the image, and one for the desired image after having

edited it. This facilitates automatic evaluation using the

methodologies outlined in [9, 25]. Throughout this anno-

tation phase, workers are presented with the input image

and instruction, and are tasked with providing captions that

faithfully describe the image while aligning with the given

instruction. See Tab. 6 for the number of images per task

and split in our benchmark.

10. Additional Results

10.1. Performance on Vision Tasks

We also evaluate the performance of our model on tasks

other than edit, specifically: detection, segmentation, and

depth estimation. We report: (i) Mean Average Preci-

sion (mAP@0.5) on MS-COCO [13] for detection task, (ii)

Mean Intersection over Union (mIoU) on ADE20K [31, 32]
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Table 7. Comparison of Emu Edit to task-specific experts on image-editing tasks. We report automatic metrics and human preference

ratings. Human evaluation (%) is shown as a percentage of majority votes in favor of our multi-task model compared to an expert model.

Task Method CLIPdir ↑ CLIPimg ↑ CLIPout ↑ L1↓ DINO↑ Text Image

Align. Faith.

Local
Expert 0.139 0.879 0.244 0.057 0.841 - -

Our 0.142 0.885 0.252 0.047 0.891 57.5 56.9

Global
Expert 0.106 0.820 0.227 0.096 0.823 - -

Our 0.118 0.852 0.235 0.072 0.847 58.4 62.6

Add
Expert 0.119 0.851 0.237 0.059 0.828 - -

Our 0.123 0.917 0.240 0.036 0.892 61.1 59.6

Background
Expert 0.145 0.689 0.229 0.240 0.560 - -

Our 0.157 0.852 0.240 0.223 0.586 64.3 62.5

for segmentation task, and, (iii) Root Mean Square Er-

ror (RMSE) on NYUv2 [16] for monocular depth estima-

tion. Emu Edit was not trained on those datasets, therefore,

we report zero-shot results on both tasks, see Tab. 8.

Table 8. Emu Edit performance on vision tasks. For object detec-

tion we use mAP@0.5, for segmentation we use mIoU, and, for

depth estimation we use RMSE.

Method Object Semantic Depth

Detection↑ Segmentation↑ Estimation↓

Emu Edit 61.467 50.028 0.246

10.2. Controlling the Task Embedding

As depicted in Fig. 9, altering the task embedding controls

the task executed by the model, resulting in different gener-

ations for a given instruction.

10.3. Influence of Number of Tasks

We report results for the ablation of the number of tasks in

Fig. 8.

10.4. Few­Shot Learning of New Tasks

Fig. 11 illustrates generation examples produced by our

model for various tasks learned in a few-shot setting. Addi-

tionally, the performance results of our model on the tasks

of super resolution and contour detection are presented in

Fig. 10.

10.5. Qualitative Comparisons with Existing Ap­
proaches

Figs. 13 and 14 shows qualitative comparisons with base-

lines on generated samples. In addition, in Figs. 17 and 18

we present qualitative comparisons of our model with base-

lines on Emu Edit test set.

Input Predicted Global Text

Add

pink

Input Predicted Local Background

Make

it

cartoon

Input Predicted Style Segment

Change

to

living

room

Figure 9. Controlling the Task Embedding. For each sample, we

present the edited image using the task predicted by the task pre-

dictor. In addition, we present the edited image generated using

the same input image and instruction, but with different task em-

beddings. For instance, in the first row we generate the edited

image using the predicted task (Add), Global task, and Text task.

10.6. Qualitative Comparison of Sequential Edit
Thresholding

In Fig. 12, a qualitative comparison is provided to demon-

strate the effectiveness of the proposed technique in main-

taining image quality during multi-turn editing scenarios.

Specifically, we vary the value of the hyperparameter α,

which controls the degree to which pixel values are used

during the editing process. With α = 0, no thresholding is

applied and the output image is simply the result of pass-

ing the input image through the model. Conversely, when

α = 1, the input image is used as the output image with-

out any editing. We present results for several values of α,

including 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, and the baseline

value of 0. As can be observed from the figure, when no

clipping is applied (i.e., α = 0), artifacts tend to accumulate
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(a) Super Resolution (b) Contour Detection

Figure 10. Few-shot performance for different tasks over 1, 10,

and 100 samples. Each line represents a different training setting:

Emu finetune (Blue, ⃝), Emu Edit finetune (Orange, □), task in-

version (Green, △), all compared to an upper-bound expert trained

on 100k samples (Red dashed line, ♢).

and manifest as general noise in the output image. On the

other hand, applying a threshold helps preserve the quality

of the output image even when multiple edit turns are ap-

plied. However, using a large value of α can interfere with

the editing process and result in poor edit quality. Based on

these observations, we opt to use a value of α = 0.03 in

our experiments, as it strikes a balance between preserving

image quality and allowing for effective editing.

11. Implementation Details

We use a scaled-down version of [6] which is conditioned

on CLIP ViT-L [18] and T5-XL [19], and generates images

at a resolution of 512 × 512. We adapt it to obtain image

inputs by concatenating to the input channels following [2].

We condition on the text and task embeddings both through

cross-attention and by addition to the timestep embeddings.

For training, we employ the Adam optimizer with a batch

size of 512. We use a learning rate of 2e-5 with a cosine

decay schedule and a linear warmup of 2,000 iterations. The

training spans 48,000 steps.
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Add

sunglasses

and detect

them

Add a

butterfly

and detect

it

Add pumpkins

next to the

squirrel and

change the

style to

3D rendering

Include a

flock of birds

flying and

make it a

vintage

photograph.

Fill the

missing

pixels:

halloween

giant chocolate

chip cookie

Fill the

missing

pixels:

a view of

a city

from afar

Mark the

watch

faces

Mark

the

furniture

Upsample

the

resolution

Upsample

the

resolution

Input Emu Edit Input Emu Edit

Figure 11. Generations of our model on unseen tasks with task inversion. From top to bottom: (i) composition of add and detect tasks, (ii)

composition of add and style tasks, (iii) image in-painting, (iv) contour detection, (v) super-resolution.
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A dog playing guitar

on the beach
Turn to an electric guitar Make the sea wavy Change dog color to white Turn guitar to red Add the word "Hello" Replace stone with sea shell Make it cloudy

α = 0

α = 0.01

α = 0.025

α = 0.05

α = 0.1

α = 0.25

α = 0.5

Figure 12. Effect of Sequential Edit Thresholding during sequential edits (from left to right) with different α values.
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Input Emu Edit InstructPix2Pix MagicBrush

Give

him

sneakers

Put a

big smile

on his face

Replace

nose with

chicken beak

Change his

color to

linear blue

gradient

Add

him

wings

Set the

background

to VR

world

Figure 13. Qualitative comparison with baselines.
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Input Emu Edit InstructPix2Pix MagicBrush

Replace Emu

with

peacock

Make it

a Bansky

painting

Cover the

house with

candies

Remove

the

car

Figure 14. Qualitative comparison with baselines.
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1 def get_content_instruction(new_prompt):

2 optional_verbs = choice(["include", "place", "position", "set", "incorporate", "alongside", "

give", "put", "insert", "together with", "with", "make", "integrate", "have", "append", "

make", "add", "include"])

3

4 # system message #

5 system_message =

6 f"<<SYS>>

7 You are an assistant that only speaks JSON. Do not write normal text. The assistant answer is

JSON with the following string fields: 'edit', 'edited object','output'. Here is the latest

conversation between Assistant and User.

8 <</SYS>>"

9

10 # introduction message #

11 intro_message =

12 f"[INST]User: Hi, My job to take a given caption ('input') and to output the following: an

instruction for {optional_verbs} an object to the image ('edit'), the object to {optional_

verbs} ('edited object'), and the caption with the object ('output'). Please help me do it.

I will give you the 'input', and you will help. When you reply, use the following format:

{"edit": '<instruction>', 'edited object': '<object>', 'output': '<caption>'}[/INST]

13 Assistant: Sure, I'd be happy to help! Please provide the actual input caption you'd like me to

read and I'll assist you with writing an instruction to {optional_verbs} an object to the

image, writing the added object and writing the caption with the object."

14

15

16 # shuffling #

17 random.seed(torch.randint(1 << 32, ()).item())

18 shuffle(few_shot_examples)

19 few_shot_examples = few_shot_examples[:int(len(few_shot_examples) * 0.6)]

20 prompt = system + intro_message + "".join(few_shot_examples)

21

22 # add the test prompt #

23 prompt = prompt + f"[INST]User: {new_prompt}[/INST]"

24

25 return prompt

Figure 15. An example of in-context learning for the task of Add.
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1 few_shot_examples = [

2 [INST]User: "Beautiful cat with mojito sitting in a cafe on the street"[/INST]

3 Assistant: {"edit": "include a hat", "edited object": "hat", "output": "Beautiful cat wearing a

hat with mojito sitting in a cafe on the street"}

4 [INST]User: "robot playing chess at home."[/INST]

5 Assistant: {"edit": "add a cheerful smiling face.", "edited object": "robot", "output": "robot

playing chess at home with a cheerful smiling face."}

6 [INST]User: "A cute creature sits at the beach."[/INST]

7 Assistant: {"edit": "set a dog besides the creature", "edited object": "dog", "output": "A cute

creature and a dog sit at the beach."}

8 [INST]User: "Superhero on the street in sunny day working on his tablet."[/INST]

9 Assistant: {"edit": "put a vintage tie on the superhero.", "edited object": "tie", "output":

"Superhero with a vintage tie on the street in sunny day working on his tablet."}

10 [INST]User: "Picture clouds, birds, the wind, foliage, rainbow, hill, art, pair, guy"[/INST]

11 Assistant: {"edit": "together with a dog on the left", "edited object": "dog", "output":

"Picture clouds, birds, the wind, foliage, rainbow, hill, art, pair, guy, dog on the left"}

12 [INST]User: "horse on a red Boat Near Mountains During Golden Hour"[/INST]

13 Assistant: {"edit": "give the horse sunglassess", "edited object": "sunglassess", "output":

"horse with sunglassess on a red Boat Near Mountains During Golden Hour"}

14 [INST]User: "An animal family on studio background."[/INST]

15 Assistant: {"edit": "make them hold a teddy bear.", "edited object": "teddy bear", "output": "An

animal family holding a teddy bear on studio background."}

16 [INST]User: "Baked Salmon With Bell Peppers"[/INST]

17 Assistant: {"edit": "insert kale pesto to the dish", "edited object": "kale pesto", "output":

"Baked Salmon With Kale Pesto And Bell Peppers"}

18 [INST]User: "An airplaine is flying in the sky in rainy day."[/INST]

19 Assistant: {"edit": "add flowers in the windows", "edited object": "flowers", "output": "An

airplaine with flowers in the windows is flying in the sky in rainy day."}

20 [INST]User: "photo of mountains and trees"[/INST]

21 Assistant: {"edit": "position a castle between the trees", "edited object": "castle", "output":

"photo of mountains, trees and castle between the trees"}

22 [INST]User: "Little bunny in the park"[/INST]

23 Assistant: {"edit": "Make the bunny play with a kite.", "edited object": "kite", "output":

"Little bunny playing with a kite in the park"}

24 [INST]User: "Attic Bedroom With Large Ceilings"[/INST]

25 Assistant: {"edit": "decorate the room with beautiful chandeliers", "edited object":

"chandeliers", "output": "Attic Bedroom With Beautiful Chandeliers on Large Ceilings"}

26 [INST]User: "Wedding rings and yellow flower on a red background"[/INST]

27 Assistant: {"edit": "place a bird by the yellow flower", "edited object": "bird", "output":

"Wedding rings, a bird, and yellow flower on a red background"}

28 [INST]User: "Tree Near the lake in the morning"[/INST]

29 Assistant: {"edit": "Give it autumn leaves on top", "edited object": "leaves", "output": "Tree

with autumn leaves on top Near the lake in the morning"}

30 [INST]User: "robot and alien sitting on hanging bridge at daytime"[/INST]

31 Assistant: {"edit": "make them hold three books.", "edited object": "three books", "output":

"robot and alien holding three books while sitting on hanging bridge at daytime"}

32 [INST]User: "Skogafoss waterfall in the south of Iceland"[/INST]

33 Assistant: {"edit": "Set a colorful rainbow in the backhground!", "edited object": "rainboe",

"output": "Skogafoss waterfall with a colorful rainbow in the south of Iceland"}

34 [INST]User: "Polar Bear with rubber gloves pushing shopping carts"[/INST]

35 Assistant: {"edit": "Make it wear a coat", "edited object": "coat", "output": "Polar Bear with a

coat pushing shopping carts"}

36 ]

Figure 16. Examples of prompts for Add task.
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Let the

keyboard

be yellow

Remove the

forks from the

shelf

Add a green

bowl on the

branch

Add the word

’hi’ in graffiti

font to the side

of the truck

Make the

donut an

apple

Turn the

umbrella into

a palm tree

Add a dog

chasing its own

tail in the

middle of the

carpeted room.

Original Emu Edit InstructPix2Pix MagicBrush P2P

Figure 17. Qualitative comparison of our model to baselines on Emu Edit Test Set.
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Turn the

refrigerator into

a bookshelf with

books

Change the image

to have a 1970s

pop art style.

Remove the

Christmas trees

on the table
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as the background

of the scene.

Change the

color of the

lighthouse into

completely red.

Remove the

curtains.

Add the word
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to the sky.

Original Emu Edit InstructPix2Pix MagicBrush P2P

Figure 18. Qualitative comparison of our model to baselines on Emu Edit Test Set.
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